Salmonella Pathogenicity Island SPI is an Integrative and Conjugative Element with a Close Relative in Salmonella bongori

Helena M. B. Seth-Smith, Chinyere Okoro, Nicholas R. Thomson, Julian Parkhill
Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

1. SPI-7 background

- SPI-7 is a large pathogenicity island encoding virulence functions:
 - Vi antigen
 - SopE effector
 - Type IVB pilus
- SPI-7 is found in most strains of Salmonella Typhi and Salmonella Paratyphi C, as well as some strains of Salmonella Dublin, ranging in size from 82kb to 129kb

2. SPI-7 shares features with ICEs

- SPI-7 shares features with characterised integrative and conjugative elements (ICEs):
 - Genes are not essential for conjugation.
 - Many genes are conserved between SPI-7, ICESt1 and ICEHin1056.
 - This phenotypic analysis indicates which genes are involved in excision, circularisation and conjugation.

3. A related ICE in Salmonella bongori

- A relative of SPI-7 has been identified within a strain of Salmonella bongori, isolated from a dog with diarrhoea.
 - This element, ICESb1, shares 98% nucleotide identity with SPI-7 along the ICE backbone.
 - ICESb1 carries an alternative cargo, which includes:
 - putative autotransporter
 - putative antibiotic resistance determinants and drug efflux
 - putative immunoglobulin binding regulators lbrAB
 - Von Willebrand A homologue

4. Mobility of SPI-7 and ICEs

- SPI-7 from Salmonella Typhi is not able to transfer itself into new hosts, although it can promote the conjugation of other resident plasmids [Baker, 2008].
- Nested PCR shows that SPI-7 from S. Typhi strains is not able to excise from the chromosome and circularise, whereas SPI-7 from strains of S. Dublin and S. Paratyphi C is able to do this (data not shown).

5. ICE comparisons identify homologues and candidate knockouts

- Many genes are conserved between SPI-7, ICESt1 and ICEHin1056.
- Some genes have putative assigned functions:
 - The "left" region is involved in the integration/excision of the ICE
 - The "replication region" is involved in replicating the circular intermediate
 - The "transfer" region is involved in the formation of the novel "GI" (Genomic Island) Type 4 Secretion System (T4SS) [Juhás, 2007].

6. Knockouts imply function

- Excision is the first step in the process: if this is abolished, no further steps occur (as seen in Δ57, Δ76, (to a large degree), Δ117 (preliminary data) and Δ118).
- Circularisation is the next step and is non-functional in mutants Δ3, Δ4, Δ5 and Δ11.
- Conjugation requires many gene products, forming the GI T4SS and controlling DNA transfer. This is abolished in Δ9, Δ12, Δ40-42, Δ44-54, Δ58 and Δ61-69.
- Genes not involved in the process include Sb1_34, Sb1_35 and Sb1_43.
- Mutants Δ56 and Δ59 demonstrate a reduction in conjugation efficiency, but these genes are not essential for conjugation.

7. Why is SPI-7 immobile?

- SPI-7 from S. Typhi has been shown to promote conjugation, thus must contain all the genes essential for conjugation.
- This phenotypic analysis indicates which genes are involved in excision, circularisation and conjugation.

8. References

This project is funded by the Wellcome Trust through its core funding for the Sanger Institute.